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Abstract—The traffic intensity is perhaps the most widely used 
performance measure. We consider the problem of estimating traffic 
intensity of the M/M/1 queuing model. We propose an alternative 
method of estimating the traffic intensity of the M/M/1 queuing 
model. The advantage of our method lies in its simplicity. An 
approach for determination of sample size is also given. 
 
Keywords: Brown- Forsythe Test; Consistency; Inference; M/M/1; 
Sufficiency; Unbiasedness. 

1. INTRODUCTION AND LITERATURE REVIEW: 

Statistical inference in queuing theory is of recent origin. The 
aim is often to find the estimators of different performance 
measures of the queuing model. The literature of queuing 
theory outlines various performance measures of this model. 
The popular ones are average number of customers in the 
system (ܮ), average number of customers in the queue (ܮ௤), 
average waiting time in the system (ܹ), average waiting time 
in the queue ( ௤ܹ), the server utilization factor or traffic 
intensity (ߩ). Typically, numerical analysis of queuing 
scenario involves computing these performance measures. In 
attempting to do so, a queuing analyst is often handicapped by 
the lack of widely accepted statistical procedures to estimate 
these performance measures. 

There have been two broad approaches in statistical inference 
- the Classical and the Bayesian. These two approaches have 
their critics and fans. In the classical framework there have 
been a number of attempts. The pioneering work in this area is 
by Clarke (1957) who obtained maximum likelihood estimates 
for the arrival and service parameters of an M/M/1 queue. 
Lilliefors (1966) has considered the problem of finding 
confidence intervals for the actual M/M/1 traffic intensity 
from the maximum likelihood estimates given by Clarke. The 
Bayesian approach in the field of inference in queuing theory 
largely owes its development to the work by Armeroand 
Bayarri (1994a, 1994b, 1999, 2000). Sharma and Kumar 
(1999) discussed statistical inference both from frequentist as 
well as from Bayesian perspective. Choudhury and Borthakur 
(2008) derived Bayes estimators of performance measures 
with respect to squared error loss function. Zheng and Seila 

(2000) have mathematically established the nonexistence of 
expectations and standard errors of common estimators of 
performance measures. Chowdhury and Mukherjee (2011) 
carried out the estimation of waiting time in the M/M/1 model 
in the form of its right tail area known as exceedance 
probability. Srinivas et al. (2011)discussed uniform minimum 
variance unbiased estimators (UMVUE) and maximum 
likelihood estimators (MLE) and suggested the use of UMVU 
estimators over ML estimators for some measures and 
Chowdhury and Mukherjee (2013) constructed the MLE and 
Bayes estimator of ρ considering the M/M/1 queuing model. 
Srinivas and Udupa (2014) developed best unbiased 
estimation and CAN property for performance measures in a 
stable M/M/1 Queue depending on system size at departure 
epochs. Srinivas and Kale (2016) obtained ML and UMVU 
estimation of performance measures in the M/D/1 queuing 
system. Recently, under Bayesian framework, Cruz et al. 
(2017) discussed Bayesian estimation in M/M/S model by 
generating data at departure epoch. They used beta distribution 
as prior for ρ. Almeida and Cruz (2017) studied M/M/1 
queuing model by considering the number of customers left 
behind in the system at departure epochs. They used Jeffreys 
prior to obtain the posterior distributions of some parameters 
of interest and compared Choudhury and Borthakur (2008) 
priors Beta and Truncated Uniform prior via simulation with 
the Jeffreys prior and concluded that all the three priors could 
be considered acceptable.  

Very recently, Suyama et al. (2018) considered Markovian 
multi server queues where they derived MLE of ρ in the 
M/M/s queues and showed that the estimate is equivalent to 
the moment estimator. Choudhury and Basak (2018) 
considered the M/M/1 model and constructed MLE of ρ and 
discussed its theoretical properties – consistency, complete 
sufficiency and unbiasedness. Cruz et al. (2018) considered 
M/M/1/k queuing model where they extended results for 
infinite Markovian queues to finite Markovian queues.  

This paper is structured as follows. Section 2 contains the 
description of M/M/1 queue. Section 3 provides the procedure 
of estimating the traffic intensity. Section 4 contains sample 
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size determination and theoretical framework is given in 
section 5. Section 6 contains our analysis. Section 7 provides 
our discussion. Section 8 concludes our paper. 

2. THE M/M/1 QUEUING SYSTEM: 

The single server Markovian queue is a queuing system with 
the following assumptions. 

I. The time between the successive arrival of the customers 
is random and follows expሺߣሻ. 

II. The time required to serve each customer by the server 
i.e. the service time distribution is also random and 
follows expሺߤሻ. 

III. There is only one server. 

IV. System Capacity is infinite. 

V. The customers are served on First Come First Serve 
basis (FCFS). 

VI. Calling population is infinite. 

Any queuing analyst has the general interest to evaluate the 
performance measures of this model. These measures are 
(Gross and Harris,2008) 

I. Mean system size (ܮ௦), ܮ ൌ ߤሺ/ߣ െ  ሻߣ

II. Mean queue size (ܮ௤), ܮ௤=ߣଶ/ሺߤሺߤ െ  ሻሻߣ

III. Average waiting time in system ( ௦ܹ), ܹ ൌ 1/ሺߤ െ  ሻߣ

IV. Average waiting time in queue ( ௤ܹሻ, ௤ܹ ൌ
ߤሺߤሺ/ߣ െ  ሻሻߣ

V. Traffic intensity (ߩሻ, ߩ ൌ  In order to ensure that the) ߤ/ߣ
queue size does not explode, it is necessary that ߩ ൏ 1) 

3. ESTIMATION OF TRAFFIC INTENSITY 

Let ݔଵ,ݔଶ,…,ݔ௡భbe independent and identically distributed 
random samples of size ݊ଵfrom inter arrival time whose 
distribution is exponential with parameter λ and let 
 ௡మ be independent and identically distributedݕ,…,ଶݕ,ଵݕ
random samples of size ݊ଶfrom service time whose 
distribution is exponential with parameter μ. It is also assumed 
that ݔଵ,ݔଶ,…,ݔ௡భandݕଵ,ݕଶ,…,ݕ௡మare mutually independent.  

Now, further define ݖଵ ൌ 	∑ ௜ݔ
௡భ
௜ୀଵ ,ሺ݊ଵ	ߛ	~	 ଶݖ ሻ andߣ ൌ

	∑ ௝ݕ
௡మ
௝ୀଵ ,ሺ݊ଶ	ߛ	~	  ,ଶݖ ଵandݖ ሻ. Then, the distribution ofߤ

respectively is given by (Rohatgi &Ehsanes Saleh ,2001) 

݂ሺݖଵሻ ൌ 	
ఒ೙భ

Γሺ௡భሻ
݁ିఒ௭భݖଵ௡భିଵ, ݖଵ ൐ 0 

݂ሺݖଶሻ ൌ 	
ఓ೙మ

Γሺ௡మሻ
݁ିఓ௭మݖଶ௡మିଵ ,ݖଶ ൐ 0 

We have the joint distribution of ݖଵand ݖଶ is  

݂ሺݖଵݖଶሻ ൌ 	
ఒ೙భ

Γሺ௡భሻ
݁ିఒ௭భݖଵ௡భିଵ

ఓ೙మ

Γሺ௡మሻ
݁ିఓ௭మݖଶ௡మିଵ, ݖଵ ൐ 0, 

ଶݖ ൐ 0 

 =
ఒ೙భ

Γሺ௡భሻ

ఓ೙మ

Γሺ௡మሻ
݁ିఒ௭భିఓ௭మ	ݖଵ௡భିଵݖଶ௡మିଵ(1) 

We know make the following transformation  

ଷݑ ൌ 	
௭మ
௭భ
andݑସ ൌ 	  ଵ(2)ݖ

The Jacobian of transformation is  

|ܬ| ൌ ቮ

ௗ௭భ
ௗ௨య

ௗ௭మ
ௗ௨య

ௗ௭భ
ௗ௨ర

ௗ௭మ
ௗ௨ర

ቮ = ฬ
ସݑ	0
ଷݑ	1

ฬ = ݑସ 

We have from (1) 

݂ሺݑଷݑସሻ ൌ
ఓ೙మ

Γሺ௡మሻ
݁ିఒ௨రିఓ௨య௨రݑସ௡భିଵሺݑଷݑସሻ௡మିଵݑସ, ݑଷ ൐ 0, 

ସݑ ൐ 0 

 = 
ఒ೙భ

Γሺ௡భሻ

ఓ೙మ

Γሺ௡మሻ
݁ିఒ௨రିఓ௨య௨రݑସ௡భା௡మିଵݑଷ௡మିଵ 

∴ ݂ሺݑଷሻ ൌ න ݂ሺݑଷݑସሻ݀ݑସ
∞

଴
 

׬ = 
ఒ೙భ

Γሺ௡భሻ

ఓ೙మ

Γሺ௡మሻ
݁ିఒ௨రିఓ௨య௨రݑସ௡భା௡మିଵݑଷ௡మିଵ

∞

଴
 ସݑ݀

 =
ఒ೙భ

Γሺ௡భሻ

ఓ೙మ

Γሺ௡మሻ
ଷ௡మିଵݑ

Γሺ௡భା௡మሻ

ሺఒାఓ௨యሻ೙భశ೙మ
 

∴ ݂ሺݑଷሻ ൌ 	
ఒ೙భ

Γሺ௡భሻ

ఓ೙మ

Γሺ௡మሻ
ଷ௡మିଵݑ

Γሺ௡భା௡మሻ

ሺఒାఓ௨యሻ೙భశ೙మ
	 , ଷݑ	 ൐ 0,(3) 

We have,  

׬ =ଷሻݑሺܧ ଷ݂ሺݑ
∞

଴  ଷݑଷሻ݀ݑ

׬= 
ఒ೙భ

Γሺ௡భሻ

ఓ೙మ

Γሺ௡మሻ
ଷ௡మݑ

Γሺ௡భା௡మሻ

ሺఒାఓ௨యሻ೙భశ೙మ
ଷݑ݀

∞

଴  

 =
Γሺ௡భା௡మሻ

Γሺ௡భሻΓሺ௡మሻ
ሺ݊ଵܤ	 െ 1, ݊ଶ ൅ 1ሻ

ఒ

ఓ
 

 =
௡మ

௡భିଵ

ఒ

ఓ
 

∴ ܧ	 ቀ௡భିଵ
௡మ

=ଷቁݑ
ఒ

ఓ
(4) 

Hence, 
௡భିଵ

௡మ
 ଷ is an unbiased estimator of ρݑ

Again,  

ܧ ቀ௡భିଵ
௡మ

ଷቁݑ
ଶ
׬ = ቀ௡భିଵ

௡మ
ଷቁݑ

ଶ∞

଴ ݂ሺݑଷሻ݀ݑଷ 

 =ቀ௡భିଵ
௡మ

ቁ
ଶ
׬

ఒ೙భ

Γሺ௡భሻ

ఓ೙మ

Γሺ௡మሻ
ଷ௡మାଶିଵݑ

Γሺ௡భା௡మሻ

ሺఒାఓ௨యሻ೙భశ೙మ
ଷݑ݀

∞

଴
 

 = ቀ௡భିଵ
௡మ

ቁ
ଶ Γሺ௡భା௡మሻ

Γሺ௡భሻΓሺ௡మሻ
ሺ݊ଵܤ	 െ 2, ݊ଶ ൅ 2ሻ ቀఒ

ఓ
ቁ
ଶ
 

 =
ሺ௡మାଵሻሺ௡భିଵሻ

௡మሺ௡భିଶሻ
ቀఒ
ఓ
ቁ
ଶ
(5) 

∴ ܸ ቀ
௡భିଵ

௡మ
ଷቁݑ ൌ 	

ሺ௡భା௡మିଵሻ

௡మሺ௡భିଶሻ
ቀ
ఒ

ఓ
ቁ
ଶ
 (using (4) and (5)) 

So, ܸ ቀ௡భିଵ
௡మ

ଷቁݑ 	→ 0 as ݊ଵ 	→ 	∞, ݊ଶ 	→ 	∞ 

Hence, 
௡భିଵ

௡మ
 .ଷ is a consistent estimator of ρݑ
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Again from (3), 

݂ሺݑଷሻ ൌ 	
௡భߣ

Γሺ݊ଵሻ
௡మߤ

Γሺ݊ଶሻ
ଷ௡మିଵݑ

Γሺ݊ଵ ൅ ݊ଶሻ
ሺߣ ൅ ଷሻ௡భା௡మݑߤ

	,	 

ଷݑ ൐ 0 

= ቀଵ
ఘ
ቁ
௡మ ଵ

ቀଵା
	ೠయ
ഐ
ቁ
೙భశ೙మ

Γሺ௡భା௡మሻ

Γሺ௡భሻΓሺ௡మሻ
 ଷ௡మିଵݑ

=݃ሺݐ, ݐ ଷሻ whereݑሻ݄ሺߩ ൌ  ଷݑ	

Hence, by using Neymann Factorization Theorem, ݑଷ is a 
sufficient estimator of ρ. 

i.e. 
௡భିଵ

௡మ
 .ଷ is a sufficient estimator of ρݑ

4. DETERMINATION OF SAMPLE SIZE 

We generate a sample of inter arrival times using simulation 
technique under the Markovian setup with parameter λ. 
Similarly, we shall generate a sample from service time using 
simulation technique under Markovian setup with parameter μ. 
The simulation technique used to carry out our study is the 
method of inverse transformation. The algorithm is discussed 
by H.A. TAHA (1988)  

We simulate random samples of inter-arrival times and service 
times under Markovian setup with different combination of λ 
and μ. For each of the pairs of λ and μ we obtain estimates of 
traffic intensity using various combination of sample sizes for 
inter arrival times of the customers (݊ଵሻ and service time of 
the customers (݊ଶሻ respectively. Using the above procedure, 
we simulate 8000 estimates of the traffic intensity for each 
pair of sample sizes. 

5. THEORETICAL FRAMEWORK 

Now regarding the estimates of traffic intensity, Zheng and 
Seila (2000) prescribed “ If, after collecting samples of 
interarrival times and service times, the sample traffic 
intensity, ߩො, larger than ߩ଴ (whereߩ଴ is a known constant), the 
  .”ො in the substitution estimatorsߩ ଴would be used in placeߩ

Regarding the value ߩ଴, Dutta and Choudhury (in press) 
prescribed that “In practice, an analyst can generally specify 
an upper bound on the acceptable level of system congestion, 
i.e., an upper bound on the acceptable values of ρ. Call this 
upper bound ߩ∗. Then, ߩ଴ should be so chosen that it is as 
close to ρ* as possible (in the range ߩ∗ ൏ ଴ߩ ൏ 1)”. 

6. ANALYSIS 

For analysis we considered the following typical choices of λ 
and ߤ. 

1. λ= 12, μ = 15 
2. λ= 10, μ = 16 
3. λ= 16, μ = 18 

 

 

we consider following possible choices of ρ଴. 

For case 1 ρ଴= 0.82, 0.85 

For case 2. ρ଴= 0.65,0.67 

For case 3.	ρ଴= 0.91,0.93 

For the typical choice of λ and ߤ as stated above, we generate 
random samples of inter arrival times and service times for the 
following sample sizes viz. 

݊ଵ= (25,50,75,100,125) and 

݊ଶ= (25,50,75,100,125) 

Now, we perform homogeneity of variance test between two 
pairs of ݊ଵ and ݊ଶ. If for any two pair, the test shows non-
significant results. Then we will accept the hypothesis of 
equality of variance. There will be no need of increasing the 
sample size after that. And the pair of ݊ଵ and ݊ଶ could be 
considered as the required sample size. 

We shall perform Brown- Forsythe test for homogeneity of 
variance. The reason behind it is that it is more robust and is 
relatively insensitive to departures from normality (Brown and 
Forsythe, 1974). 

We place below the results for the first case due to constraint 
of space. 

Table 1: Brown Forsythe Test for λ= 12, μ = 15 with ࢔૚ and ࢔૛ 
pairs (25,100), (25,125) and ૉ૙= 0.82 

Brown Forsythe Test 
 Sum of 

Squares 
df Mean 

Square 
F Sig. 

Between 
Groups 

.008 1 .008 1.771 .183 

Within 
Groups 

75.526 15998 .005 
  

Total 75.534 15999    
 

Table 2: Brown Forsythe Test for λ= 12, μ = 15 with ࢔૚ and ࢔૛ 
pairs (100,25), (125,25) and ૉ૙= 0.82 

Brown Forsythe Test 
 Sum of 

Squares 
df Mean 

Square 
F Sig. 

Between 
Groups 

.001 1 .001 .186 .666 

Within Groups 93.836 15998 .006   
Total 93.837 15999    
 

Table 3: Brown Forsythe Test for λ= 12, μ = 15 with ࢔૚ and ࢔૛ 
pairs (25,100), (25,125) and ૉ૙= 0.85 

Brown Forsythe Test 
 Sum of 

Squares 
df Mean 

Square 
F Sig. 

Between 
Groups 

.016 1 .016 3.569 .059

Within 
Groups 

69.488 15998 .004 
  

Total 69.504 15999    
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Table 4: Brown Forsythe Test for λ= 12, μ = 15 with ࢔૚ and ࢔૛ 
pairs (100,25), (125,25) and ૉ૙= 0.85 

Brown Forsythe Test 
 Sum of 

Squares 
df Mean 

Square 
F Sig. 

Between 
Groups 

.000 1 .000 .087 .768 

Within Groups 85.342 15998 .005   
Total 85.343 15999    

7. DISCUSSION 

Table 1 gives the Brown Forsythe Test for λ= 12, μ = 15 with 
݊ଵ and ݊ଶ pairs (25,100), (25,125) and ρ଴= 0.82. we observe 
that p value = 0.183> 0.05. so, we can accept our null 
hypothesis of homogeneity of variance. There will be no need 
of increasing the sample size after that.  

 Table 2 gives the Brown Forsythe Test for λ= 12, μ = 15 with 
݊ଵ and ݊ଶ pairs (100,25), (125,25) and ρ଴= 0.82. we observe 
that p value = 0.666> 0.05. so, we can accept our null 
hypothesis of homogeneity of variance. There will be no need 
of increasing the sample size after that.  

Table 3 gives the Brown Forsythe Test for λ= 12, μ = 15 with 
݊ଵ and ݊ଶ pairs (25,100), (25,125) and ρ଴= 0.85. we observe 
that p value = 0.059 > 0.05. so, we can accept our null 
hypothesis of homogeneity of variance. There will be no need 
of increasing the sample size after that.  

Table 4 gives the Brown Forsythe Test for λ= 12, μ = 15 with 
݊ଵ and ݊ଶ pairs (100,25), (125,25) and ρ଴= 0.85. we observe 
that p value = 0.768> 0.05. so, we can accept our null 
hypothesis of homogeneity of variance. There will be no need 
of increasing the sample size after that.  

8. CONCLUSION 

From above discussion we can observe that the hypothesis of 
homogeneity of variance can be accepted for a total sample of 
size 125 (approx.). We therefore prescribe that a minimum 
total sample size of 125 may be used in such a manner that 
one of the components (n1 or n2) is at least 25.  

A caveat is in order. The conclusion that we have drawn is on 
the basis of simulation. We invite other researchers to carry 
out similar exercises and confirm or improve upon our 
conclusion.  
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